Abstract

The oxygen evolution reaction (OER) is an electrochemical bottleneck half-reaction in some important energy conversion systems (e.g., water splitting), which is traditionally mediated by iridium oxides in acidic environment. Perovskite-structured Ir-containing oxides (e.g., SrIrO3) are a family of striking electrocatalysts due to their high specific activity, but this excellent quality is difficultly transferred to a nano-electrocatalyst with large active surface and good structural stability. Here, we present a synthesis method that produces a 2D ultrathin {001}-faceted SrIrO3 perovskite (2D-SIO) with a thickness of ∼5 nm and high surface area (57.6 m2 g−1). We show that 2D-SIO can serve as a highly active and stable electrocatalytic nanomaterial for OER under acidic conditions. This perovskite nanomaterial produces 10 mA cm−2 current density at a low overpotential (η, 243 mV), and maintains its catalytic activity after 5000 continuous cyclic measurements. Besides ultrathin structure and large surface area, the exposed {001} facets are found to be the most crucial and unique structural factor for achieving high catalytic activity and structural stability. Our joint experimental and theoretical results demonstrate that these advantageous microstructural features of 2D-SIO endow it with a strong capability to generate the key O* intermediates, and thereby facilitate O–O bond formation and the OER.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.