Abstract

An ultrathin highly fluorinated porous membrane was designed for a large production of desalted water at very low energy consumption. Imprinting water droplets were used through a low thermally conductive tetra-fluoroethylene (TFE)/2,2,4-trifluoro-5-tri-fluorometoxy-1,3-dioxol (TIT) (HYFLON AD 60) solution and the generated porous nanofilm was suspended onto a polyethersulfone (PES) honeycomb texture. The very tiny fluorinated thickness together with a large number of small-shaped pores provided the membrane for enhanced anti-wetting surface properties, extremely reduced resistance to water vapor transfer and outstanding thermal efficiency. Fine materials structure-transport relations let the membrane reach unusual productivity-efficiency trade-off during water desalination via thermally driven membrane distillation. The exceptional performance affords this novel nanostructured membrane to catalyze the accomplishment of new-concept water desalination processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.