Abstract

An ultrathin (∼100μm thick) flexible light plate was designed and fabricated on a parylene template using a combination of self-alignment and lift-off techniques. The solid-state InGaN light-emitting diodes (LEDs) (λp=465nm) was used as the light source to overcome the problem of conventional organic light-emitting devices which require perfect encapsulation against the permeation of water and oxygen. After the sidewalls of LEDs were passivated by the photodefinable polymer, the LED chip array can be further sandwiched by the indium-tin oxide (ITO) and Al electrodes to form a thin-film package with all the processing temperatures below 250°C. The ITO-coated transparent parylene template can be peeled off from the glass carrier after forming the ultrathin LED light plate. The flexible light plates present no damage even after they were flexed 1000 times around a 3-cm-diameter cylinder. The present self-alignment or mask-less process is a very promising approach to flexible backlight applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.