Abstract

ABSTRACT The pectoral fin bud of the developing teleost embryo contains a highly ordered extracellular matrix of collagenous fibrils, called ‘actinotrichia’. During invasion of the fin fold, mesenchymal cells, migrating distally from the base of the fin, become contact aligned by the actinotrichial fibrils. Behavioural aspects of this response have previously been studied using Nomarski differential interference contrast microscopy and time-lapse video recording (Wood & Thorogood, 1984). Here we present an ultrastructural description of these cells and their matrix associations and a computer-based morphometric analysis of selected parameters within the migration substratum, relevant to this in vivo ‘contact guidance’ phenomenon. The study shows that a differentiated and aligned matrix of actinotrichial fibrils can be detected before invasion of the fin fold, at levels up to 40/zm distal to the advancing mesenchymal cell margin. Subsequently, during invasion of the fin fold, aligned mesenchymal cells and processes are almost exclusively associated with actinotrichia and not the intervening surface of the epithelial basal lamina. However, aligned cell processes appear to avoid the smaller actinotrichia and at late stages of development 87·0 % of actinotrichia without cell process contacts are distributed at the lower end of the size range. Study of cell ultrastructure revealed a complete absence of cytoskeletal organization within this mesenchymal cell population, although cytoskeletal components are clearly visible in adjacent epithelia. The computer-based morphometric survey of the migration substratum has shown a gradual but progressive increase in the mean diameter of actinotrichia at a level at which distal cell processes are first detectable in sections of fins. However, at similar levels over the same period the mean value for interactinotrichial spacings remained virtually constant. These results suggest that the spacing between actinotrichia is not significant in contributing to progressive changes in mesenchymal cell phenotype, but that the actinotrichia themselves are strongly implicated in providing the guidance cues to direct cell migration within the developing fin and the initiation of cell migration. These findings are discussed in the general context of cell movement and contact guidance both in vivo and in vitro.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.