Abstract

Free-space coupling to subwavelength individual optical elements is a central theme in quantum optics, as it allows the control over individual quantum systems. Here we show that, by combining an asymmetric immersion lens setup and a complementary resonating metasurface we are able to perform terahertz time-domain spectroscopy of an individual, strongly subwavelength meta-atom. We unravel the linewidth dependence as a function of the meta-atom number indicating quenching of the superradiant coupling. On these grounds, we investigate ultrastrongly coupled Landau polaritons at the single resonator level, measuring a normalized coupling ratio frac{{{Omega }}}{omega }=0.6. Similar measurements on a lower density two dimensional electron gas yield a coupling ratio frac{{{Omega }}}{omega }=0.33 with a cooperativity C = 94. Our findings pave the way towards the control of ultrastrong light-matter interaction at the single electron/ resonator level. The proposed technique is way more general and can be useful to characterize the complex conductivity of micron-sized samples in the terahertz domain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call