Abstract

Heterogeneous crystalline-amorphous nanostructures have been documented to show superior strength-ductility synergy via the co-deformation cooperative effects of nanograins and amorphous grain boundaries. In this work, a facile laser surface remelting technique with rapid cooling rate was successfully developed to fabricate a ∼ 100 μm-thick gradient nanostructured layer accompanied by phase decomposition on a TiZrHfTaNb0.2 high-entropy alloy, where a ∼ 5 μm-thick crystalline-amorphous nanostructured top surface layer with an average grain size of ∼ 7 nm was obtained. Such crystalline-amorphous nanostructured layer shows an ultrahigh yield strength of ∼ 6.0 GPa and a compression strain of ∼ 25 % during the localized micro-pillar compression tests. The atomic observations reveal that co-deformation cooperative mechanisms include the well-retained dislocation activities in nanograins but crystallization in amorphous grain boundaries, which subsequently lead to the grain coarsening via grain boundary-mediated plasticity. This study sheds light on the development of high-performance high-entropy alloys with novel crystalline-amorphous nanostructures and provides significant insight into their plastic deformation mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.