Abstract

This work proposes a dual-cross-linked gel solid electrolyte (SE), here defined as Zn-re-inforced sodium alginate-polyacrylamide SE (Zn-reinforced SA-PAM SE), in which Na+ and Zn2+ coexist. The SE shows a high conductivity of 19.74 mS cm-1. Compared to the pure PAM gel, the tensile strength and compressive strength of Zn-reinforced SA-PAM SE are significantly enhanced to be 674.28 kPa and 16.29 MPa, respectively, because of the strengthening mechanism of Zn2+ cross-linked SA. Based on such a robust electrolyte, a novel hybrid cell is developed by involving Na0.5FeFe(CN)6-carbon nanotube composites (PB@CNT) as the Na+ intercalation-type cathode and metallic Zn as the plating anode. The hybrid cell shows an extremely high stability for 10,000 cycles with a record little capacity loss of 0.0027% per cycle, as Zn-reinforced SA-PAM SE successfully inhibits free water molecules from occupying low-spinning metallic sites (Fe-C) in Na0.5FeFe(CN)6. Ex situ X-ray photoelectron spectroscopy reveals that the dissolution of Na0.5FeFe(CN)6 is highly reduced by 79.5%. It is further noted that the corrosion and dendrites at the Zn2+/Zn plating anode are greatly hindered for the robust electrolyte. This work gives a pathway for the development of new aqueous ion batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.