Abstract
An ultraviolet (UV) and ultrasound (US) enhanced ozonation method were developed to investigate their efficiency on the removal of atrazine and chemical oxygen demand (COD) in authentic atrazine manufacturing wastewater. The bench-scale tests suggested a positive effect of UV and US on the degradation of atrazine within a limited energy range. The pilot-scale flow-through system was further tested by using response surface methodology. The results showed that O3 and its interaction with UV promoted the degradation of both COD and atrazine while its interaction with US inhibited the removal of COD but promoted the removal of atrazine. The optimal removal rate of atrazine (96.9%) was achieved in the condition of 6.86 W/L UV, 1.96 g/L·h O3 and 294 W/L US. Chloride ions hindered the atrazine degradation, but the generated free chlorine radicals were still able to react with atrazine. In terms of energy-effectiveness, the configuration of 14.7 W/L UV and 1.96 g/L·h O3 is the best option, which have the electrical energy per order of 181.6 kWh/m3 for atrazine and 0.13 kWh/g COD. These method and findings could be helpful in the development of energy-efficient advanced oxidation processes in treating wastewater with high salinity and COD loadings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.