Abstract

Wireless power transfer is one of the enabling technologies for powering implantable biomedical devices. Biocompatibility and CMOS compatibility of wireless power transfer devices are highly desired due to safety and footprint concerns. Toward implantable applications, this paper presents an ultrasound-induced wireless power supply based on AlN piezoelectric micromachined ultrasonic transducer (PMUT). The wireless power supply integrates wireless power transfer, power management and energy storage functions. The PMUT array is used as a passive wireless power receiver, followed by electrical impedance matching networks and a voltage multiplier for efficient power transmission and rectification. The output power intensity of the wireless receiver reaches 7.36 μW/mm2 with an incident ultrasound power below the FDA safety limit. The output power of the wireless power supply reaches 18.8 μW and a 100-μF capacitor is fully charged to 3.19 V after power management, which are sufficient to power many low-power implantable biomedical devices such as for neural electrical stimulation, biosensors and intrabody communication applications. The wireless power supply is implemented in a PCB with a diameter of 1 cm. With biocompatibility and CMOS compatibility of AlN thin film compared to commonly used PZT, the proposed solution paves the way for safer and ultraminiaturized wireless power supplies with further development incorporating all the functions on a monolithic chip in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call