Abstract

Most therapeutic ultrasound devices place emitters and receivers in separate locations, so that the long therapeutic pulses (>1 ms) can be emitted while receivers monitor the procedure. However, with such placement, emitters and receivers are competing for the same space, producing a trade-off between emission efficiency and reception sensitivity. Taking advantage of recent studies demonstrating that short-pulse ultrasound can be used therapeutically, we aimed to develop a device that overcomes such trade-offs. The array was composed of emitter-receiver stacks, which enabled both emission and reception from the same location. Each element was made of a lead zirconate titanate (PZT)-polyvinylidene fluoride (PVDF) stack. The PZT (frequency: 500 kHz, diameter: 16 mm) was used for emission and the PVDF (thickness: 28 μm, diameter: 16 mm) for broadband reception. 32 elements were assembled in a 3D-printed dome-shaped frame (focal length: 150 mm; [Formula: see text]-number: 1) and was tested in free-field and through an ex-vivo human skull. In free-field, the array had a 4.5 × 4.5 × 32 mm focus and produced a peak-negative pressure (PNP) of 2.12 MPa at its geometric center. The electronic steering range was ±15 mm laterally and larger than ±15 mm axially. Through the skull, the array produced a PNP of 0.63 MPa. The PVDF elements were able to localize broadband microbubble emissions across the skull. We built the first multi-element array for short-pulse and microbubble-based therapeutic applications. Stacked arrays overcome traditional trade-offs between the transmission and reception quality and have the potential to create a step change in treatment safety and efficacy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call