Abstract
To characterize the pulsatile secretion of LH and FSH and their relationships with various stages of follicular wave development (follicles growing from 3 to ≥5 mm) and formation of corpora lutea (CL), 6 Western white-faced ewes underwent ovarian ultrasonography and intensive blood sampling (every 12 min for 6 h) each day, for 10 and 8 consecutive days, commencing 1 and 2 d after estrus, respectively. Basal serum concentrations of LH and LH pulse frequency declined, whereas LH pulse duration and FSH pulse frequency increased by Day 7 after ovulation (P<0.05). LH pulse amplitude increased (P<0.05) at the end of the growth phase of the largest ovarian follicles in the first follicular wave of the cycle. The amplitude and duration of LH pulses rose (P<0.05) 1 d after CL detection. Mean and basal serum FSH concentrations increased (P<0.05) on the day of emergence of the second follicular wave, and also at the beginning of the static phase of the largest ovarian follicles in the first follicular wave of the cycle. FSH pulse frequency increased (P<0.05) during the growth phase of emergent follicles in the second follicle wave. The detection of CL was associated with a transient decrease in mean and basal serum concentrations of FSH (P<0.05), and it was followed by a transient decline in FSH pulse frequency (P<0.05). These results indicate that LH secretion during the luteal phase of the sheep estrous cycle reflects primarily the stage of development of the CL, and only a rise in LH pulse amplitude may be linked to the end of the growth phase of the largest follicles of waves. Increases in mean and basal serum concentrations of FSH are tightly coupled with the days of follicular wave emergence, and they also coincide with the end of the growth phase of the largest follicles in a previous wave, but FSH pulse frequency increases during the follicle growth phase, especially at mid-cycle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.