Abstract
A method for the production of antibacterial ZnO nanoparticles has been developed. The technique combines passing an electric current with simultaneous application of ultrasonic waves. By using high-power ultrasound a cavitation zone is created between two zinc electrodes. This leads to the possibility to create a spatial electrical discharge in water. Creation of such discharge leads to the depletion of the electrodes and the formation of ZnO nanoparticles, which demonstrate antibacterial properties. At the end of this reaction the suspension of ZnO nanoparticles is transported to a specially developed ultrasonic reactor, in which the nanoparticles are deposited on the textile. The nanoparticles are embedded into the fibres by the cavitation jets, which are formed by asymmetrically collapsing bubbles in the presence of a solid surface and are directed towards the surface of textile at very high velocities. Fabrics coated with ZnO nanoparticles by using the developed method showed good antibacterial activity against E. coli.
Highlights
The problem of nosocomial (acquired in hospitals) infections becomes more and more urgent
The problem of nosocomial infections becomes more and more urgent
It is clearly visible that the antibacterial activity of the textile coated by the sonoplasma particles against E. coli is higher than the fabric coated with industrial NP’s
Summary
The problem of nosocomial (acquired in hospitals) infections becomes more and more urgent. Antimicrobial textiles can be produced by coating textiles with antibacterial nanoparticles (NPs). The goal of the current research is to produce an aqueous suspension of ZnO NPs directly before their introduction into the fibres, deposit them on textile samples and analyse the antibacterial properties of the samples comparing their antibacterial activity and the antibacterial activity of samples coated with industrially produced NPs. discharge in liquids [6].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.