Abstract

A new ultrasonic suction pump is described in this paper. The pump uses the suction force of a rigid cylinder tube vibrating at an ultrasonic frequency and has no physically moving parts. The pump consists of a longitudinal bolt-clamped Langevin transducer (BLT) combined with a stepped horn working at a resonance frequency of 24 kHz. A glass tube with the length of the half-wavelength-resonance is glued at the tip of the horn. To enhance pump performance, we introduced a reflection plate and a thin rod installed to the end of the glass tube with a small gap. Maximum pressures of 7.2 kPa and 23.5 kPa were recorded using the reflection plate and the thin rod, respectively. In this study, we experimentally investigate the characteristics of the pump and the operating physics. The maximum pressure is a function of the vibration velocity of the end surface of the glass tube and of the gap.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.