Abstract

An ultrasonic Rayleigh wave transducer was designed for nondestructive pressure measurement in vessels. Using polyimide resin as the wedge material, the Rayleigh wave transducer had two piezoelectric elements which were placed in the same wedge with a certain distance. Variations in pressure and temperature of vessels can affect the velocity of ultrasonic waves, which will affect variations in time delay in receiving of the same Rayleigh wave with the two piezoelectric elements of the designed transducer. Based on the acoustoelasticity principle and considered the effect of temperature, a practical correlation model between the time delay and both the pressure and temperature of vessels was developed. Using an air vessel as a specimen, Rayleigh wave transducers were arranged in the axial direction of the vessel. The results of temperature experiments show that effect of changes in temperature on time delay agree with the theoretical results. With the calculation temperature compensation in pressure experiment, the relationship between the variations in the time delay caused by changes of pressure and the pressure is established. The pressure measurement results show that the measurement model is effective and the maximum absolute error is 0.09 MPa, which could be acceptable in engineering application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.