Abstract
10544 Background: Screening the biomarkers from the cell-free DNA (cfDNA) of peripheral blood is a non-invasive and promising method for cancer diagnosis. Among diverse types of biomarkers, epigenetic biomarkers have been reported to be one of the most promising ones. Epigenetic modifications are widespread on the human genome and generally have strong signals due to the similar methylation patterns shared by adjacent CpG sites. Although some epigenetic diagnostic methods have been developed based on cfDNAs, few of them could be applied to pan-cancer and their sensitivities are barely satisfactory for early cancer detection. Methods: Targeted methylation sequencing was performed using our in-house-designed panel targeting regions with abundant cancer-specific methylation CpGs. The cfDNA samples from 80 healthy individuals and 549 cancer patients of 14 cancer types were separately sequenced. The dataset was randomly split into one discovery dataset and one validation dataset. Moreover, cfDNA samples from four cancer patients were diluted with the healthy cfDNAs to generate 12 in vitro simulated samples with low circulating tumor DNA (ctDNA) fraction. Additionally, DNAs extracted from 130 unmatched tumor formalin fixation and paraffin embedding (FFPE) samples of 10 cancer types were sequenced to screen the diagnostic biomarkers. Adjacent CpG sites were first merged into methylation-correlated blocks (MCB) according to their correlations of methylation levels in tumor DNAs. The MCBs with higher methylation levels in tumor DNAs than that of healthy cfDNAs (from the discovery dataset) were defined as our hypermethylation biomarkers. For each cfDNA sample, a hypermethylation score (HM-score) was computed to measure the overall methylation level difference of selected biomarkers. The performance of our method was evaluated with the real-world dataset, while the limit of detection was estimated using the simulated low-ctDNA samples. Results: Our model based on 37 hypermethylation MCB biomarkers achieved an area under the curve (AUC) of 0.89 and 0.86 in the real-world pan-cancer discovery and validation cfDNA datasets, respectively. Furthermore, the overall specificity and sensitivity are 100% and 76.19% in the discovery dataset, and 96.67% and 72.86% in the validation dataset. In the validation dataset, 28/40 (70%) of early-stage colorectal cancer patients and 10/20 (50%) of non-small-cell lung cancer patients were successfully diagnosed. Additionally, all the simulated samples with theoretical ctDNA factions over 0.5% were predicted as diseased, demonstrating the ability of our method to detect tumor signals at early stages. Conclusions: Our cfDNA-based epigenetic method outperforms currently available methods in various cancer types, and is promising to be applied to early-stage cancer detection and samples with low ctDNA fractions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.