Abstract

Carcinoembryonic antigen (CEA) has been recognized as one of the most important tumor markers. Herein, we reported an ultrasensitive homogeneous aptasensor based on fluorescence resonance energy transfer (FRET) between upconversion nanoparticles (UCNPs) and graphene oxide (GO) for CEA detection. The CEA aptamer modified UCNPs can bind to the surface of GO through π-π stacking interaction, resulting in fluorescence quenching due to the energy transfer from UCNPs to GO. After the introduction of CEA, the CEA aptamer preferentially combined with CEA to form three-dimensional structure which made UCNPs-aptamer dissociate from the GO, blocking the energy transfer process. The fluorescence of UCNPs was accordingly restored in a CEA concentration-dependent manner both aqueous solution and human serum samples. The aptasensor could monitor CEA level directly in human serum and the results were strongly correlated with commercial chemiluminescence kits. The excellent detection performance suggested promising prospect of the aptasensor in practical application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call