Abstract

Sensitive and accurate diagnosis of SARS-CoV-2 infection at early stages can help to attenuate the effects of the COVID-19. Compared to RNA and antibodies detection, direct detection of viral antigens could reflect infectivity more appropriately. However, it is still a great challenge to construct a convenient, accurate and sensitive biosensor with a suitable molecular recognition element for SARS-CoV-2 antigens. Herein, we report a HRCA-based aptasensor for simple, ultrasensitive and quantitative detection of SARS-CoV-2 S1 protein and pseudovirus. The aptamer sequence used here is selected from several published aptamers by enzyme-linked oligonucleotide assay and molecular docking simulation. The sensor forms an antibody-target-aptamer sandwich complex on the surface of microplates and elicits HRCA for fluorescent detection. Without complicated operations or special instruments and reagents, the aptasensor can detect S1 protein with a LOD of 89.7 fg/mL in the linear range of 100 fg/mL to 1 μg/mL. And it can also detect SARS-CoV-2 spike pseudovirus in artificial saliva with a LOD of 51 TU/μL. Therefore, this simple and ultrasensitive aptasensor has the potential to detect SARS-CoV-2 infection at early stages. It may improve the timeliness and accuracy of SARS-CoV-2 diagnosis and demonstrate a strategy to conduct aptasensors for other targets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.