Abstract

Personalized rehabilitation training provides maximum help to stroke patients to alleviate the after-effects and restore the body to normal function. However, available monitoring devices have the disadvantages of being large, requiring professional guidance, and lacking intuitive signal display capabilities. Herein, a bio-inspired wearable high-performance strain sensor with a simple structure can simultaneous electrical signals and optical visualization in response to external stimuli. The sensor comprises a conductive layer with significant electromechanical behaviors of cellulose nanocrystals (CNC)/carbon nanotubes (CNTs)/MXene nanohybrid network, and a stretchable elastomer layer consisting of thermoplastic polyurethane and fluorescent agent. Benefiting from the designed microcracks and fluorescent material, the strain sensor exhibits ultra-high sensitivity (476800), ultra-low detection limit (0.005%), low response time (60 ms), wide working range (0–100%), and enables strain visualization for applications in visually rehabilitation training monitoring. Based on these sensing characteristics, the sensor shows great advantages in human motion and sound monitoring, with the integration of digital signals and visual images makes it show great potential in visually personalized rehabilitation training monitoring.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call