Abstract

Exosomes, lipid bilayer membrane vesicles, can guide various pathological and physiological processes. However, reliable, convenient and sensitive methods for exosome determination for early cancer diagnosis are still technically challenging. Herein, an electrochemical aptasensor based on click chemistry and the DNA hybridization chain reaction (HCR) for signal amplification has been developed for the ultrasensitive detection of tumor exosomes. CD63 aptamer was first immobilized on a glassy carbon electrode for capturing exosomes, and 4-oxo-2-nonenal alkyne (alkynyl-4-ONE) molecules, functionalized lipid electrophiles, were conjugated to the exosomes via the reaction of amino and aldehyde groups. Azide-labeled DNA probe as an anchor was then connected to the exosomes by copper (I)-catalyzed click chemistry. Signal amplification was achieved by HCR, and the numerous linked horseradish peroxidase (HRP) molecules could catalyze the reaction of o-phenylenediamine (OPD) and H2O2. The concentration of exosomes could be quantified by monitoring the electrochemical reduction current of 2,3-diaminophenazine (DAP). Under the optimal conditions, this method allowed the sensitive detection of exosomes in the range of 1.12 × 102 to 1.12 × 108 particles/μL with a limit of detection (LOD) of 96 particles/μL. Furthermore, the present assay enabled sensitive and accurate quantification of exosomes in human serum, and it has high potential for exosome analysis in clinical samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.