Abstract

Patulin (PAT) is a mycotoxin-produced secondary metabolite that can contaminate foods, causing toxic effects on animal and human health. Therefore, for the first time, we have constructed a “turn-on” dual-mode aptamer sensor for PAT using oleic acid-coated upconversion nanomaterials (OA-UCNPs) and G-Quadruplex-hemin DNAzyme (G4-DNAzyme) as fluorescent and colorimetry probes. The sensor employs aptamers binding to PAT as recognition elements for specific molecule detection. Mxene-Au can be used as a biological inducer to assist OA-UCNPs in controlling fluorescence intensity. In addition, colorimetric signal amplification was performed using the trivalent G4-DNAzyme to increase detection sensitivity and reduce false positives. Under optimal conditions, the dual-mode aptasensor has a detection limit of 5.3 pg mL−1 in fluorescence and 2.4 pg mL−1 in colorimetric methods, respectively, with the wider linear range and limit of detection (LOD) of the colorimetric assay. The combination aptasensor can detect PAT with high sensitivity and high specificity and has broad application prospects in the field of food safety detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.