Abstract

The development of biosensors capable of averting biofouling and detecting biomarkers in complex biological media remains a challenge. Herein, an ultralow fouling and highly sensitive biosensor based on specifically designed antifouling peptides and a signal amplification strategy was designed for prostate specific antigen (PSA) detection in human serum. A low fouling layer of poly(ethylene glycol) (PEG) doped the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) was electrodeposited on the electrode surface, followed by the immobilization of streptavidin and further attachment of biotin-labelled peptides. The peptide was designed to include PSA specific recognition domain (HSSKLQK) and antifouling domain (PPPPEKEKEKE), and the terminal of the peptide was functionalized with –SH group. DNA functionalized gold nanorods (DNA/AuNRs) were then attached to the electrode, and methylene blue (MB) molecules were adsorbed to the DNA to form the signal amplifier. In the presence of PSA, the peptide was specifically cleaved and resulted in the loss of AuNRs together with DNA and MB, and thus significant decrease of the current signal. The biosensor exhibited a low limit of detection (LOD) of 0.035 pg mL-1 (S/N = 3), with a wide linear range from 0.10 pg mL-1 to 10.0 ng mL-1, and it was able to detect PSA in real human serum owing to the presence of the antifouling peptides, indicating great potential of the constructed biosensor for practical application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.