Abstract

Quinones are a class of compounds of substantial toxicological and pharmacological interest. An ultrasensitive and highly selective chemiluminescence (CL) method was newly developed for the determination of quinones based on the utility of photochemically initiated luminol CL. The method involved ultraviolet (UV) irradiation of quinones to generate reactive oxygen species (ROS) through the unique photosensitization reaction accompanied with the photolytical generation of 3,6-dihydroxyphthalic acid (DHPA) from quinones. The photoproducts were detected by luminol CL reaction. Interestingly, it was noticed that DHPA had enhancement effect for the luminol CL. The generation of the enhancer (DHPA) in association with the oxidant (ROS) in the photochemical reaction greatly increases the sensitivity and selectivity of the proposed luminol CL method. In order to elucidate the type of ROS produced by the photosensitizaion reaction in relation to the proposed CL reaction, we investigated the quenching effect of selective ROS scavengers in the luminol CL. Although several ROS were generated, superoxide anion was the most effective ROS for the generated CL. Moreover, the enhancement mechanism of DHPA for luminol CL was confirmed. The enhancement was found to be through the formation of stabilized semiquinone anion radical that provided long-lived CL. The generation of the semiquinone radical was confirmed by electron spin resonance technique. Furthermore, we developed an HPLC method with on-line photochemical reaction followed by the proposed CL detection for the determination of four quinones. A luminol analogue, L-012, was used for its high sensitivity. The detection limits for quinones obtained with the proposed method (S/N = 3) were in the range 1.5–24 fmol that were 10–1000 times more sensitive compared with the previous methods. Finally, the developed HPLC-CL system was successfully applied for the determination of quinones in airborne particulate samples collected at Nagasaki city.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.