Abstract

Without using bipolar transistors, serially connected inverter cells generate clock delay according to temperature. The delay is compared with a reference clock to estimate the temperature. The proposed time-to-digital converter (TDC) structure is using a time-domain delta–sigma $(\Delta\Sigma)$ modulator. This type of TDC with $\Delta\Sigma$ modulator can achieve higher resolution by increasing the oversampling ratio, with the advantages of low area and low power consumption. To increase the accuracy by producing true temperature-independent time delay, an external reference clock is utilized, instead of temperature-independent inverter cells, for robust operations. The measured temperature sensors demonstrated a minimum power consumption of 480 nW and a resolution under 0.1 °C. The $3\sigma$ error of the sensor is ±0.99 °C over −20 °C–80 °C temperature range from ten-sample measurement results. The chip area is 0.089 mm2 using a Dongbu 0.18- $\mu\mbox{m}$ CMOS process. The conversion rate is 1.25 samples/s.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.