Abstract
The electrolyte concentration not only impacts the battery performance but also affects the battery cost and manufacturing. Currently, most studies focus on high-concentration (>3 M) or localized high-concentration electrolytes (~1 M); however, the expensive lithium salt imposes a major concern. Most recently, ultralow concentration electrolytes (<0.3 M) have emerged as intriguing alternatives for battery applications, which feature low cost, low viscosity, and extreme-temperature operation. However, at such an early development stage, many works are urgently needed to further understand the electrolyte properties. Herein, we introduce an ultralow concentration electrolyte of 2 wt % (0.16 M) lithium difluoro(oxalato)borate (LiDFOB) in standard carbonate solvents. This electrolyte exhibits a record-low salt/solvent mass ratio reported to date, thus pointing to a superior low cost. Furthermore, this electrolyte is highly compatible with commercial Li-ion materials, forming stable and inorganic-rich interphases on the lithium cobalt oxide (LiCoO2) cathode and graphite anode. Consequently, the LiCoO2-graphite full cell demonstrates excellent cycling performance. Besides, this electrolyte is moisture-resistant and effectively suppresses the generation of hydrogen fluoride, which will markedly facilitate the battery assembly and recycling process under ambient conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.