Abstract

Maximum power point tracking (MPPT) for photovoltaic (PV) arrays is essential to optimize conversion efficiency under variable and nonuniform irradiance conditions. Unfortunately, conventional MPPT algorithms such as perturb and observe (P&O), incremental conductance, and current sweep method need to iterate command current or voltage and frequently operate power converters with associated losses. Under partial overcast conditions, tracking the real MPP in multipeakP-IorP-Vcurve model becomes highly challenging, with associated increase in search time and converter operation, leading to unnecessary power being lost in the MPP tracking process. In this paper, the noted drawbacks in MPPT-controlled converters are addressed. In order to separate the search algorithms from converter operation, a model parameter identification approach is presented to estimate insolation conditions of each PV panel and build a real-time overallP-Icurve of PV arrays. Subsequently a simple but effective global MPPT algorithm is proposed to track the MPP in the overallP-Icurve obtained from the identified PV array model, ensuring that the converter works at the MPP. The novel MPPT is ultrafast, resulting in conserved power in the tracking process. Finally, simulations in different scenarios are executed to validate the novel scheme’s effectiveness and advantages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.