Abstract
Pseudocapacitors or redox capacitors that synergize the merits of batteries and double-layer capacitors are among the most promising candidates for high-energy and high-power energy storage applications. 2D transition metal carbides (MXenes), an emerging family of pseudocapacitive materials with ultrahigh rate capability and volumetric capacitance, have attracted much interest in recent years. However, MXenes have only been used as negative electrodes as they are easily oxidized at positive (anodic) potential. To construct a high-performance MXene-based asymmetric device, a positive electrode with a compatible performance is highly desired. Herein, an ultrafast polyaniline@MXene cathode prepared by casting a homogenous polyaniline layer onto a 3D porous Ti3 C2 Tx MXene is reported, which enables the stable operation of MXene at positive potentials because of the enlarged work function after compositing with polyaniline, according to the first-principle calculations. The resulting flexible polyaniline@MXene positive electrode demonstrates a high volumetric capacitance of 1632 F cm-3 and an ultrahigh rate capability with 827 F cm-3 at 5000 mV s-1 , surpassing all reported positive electrodes. An asymmetric device is further fabricated with MXene as the anode and polyaniline@MXene as the cathode, which delivers a high energy density of 50.6 Wh L-1 and an ultrahigh power density of 127 kW L-1 .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.