Abstract

In this paper, an improved cubature Kalman filtering (CKF) is proposed using the Sigmoid function to address the problems of positioning accuracy degradation and large deviations in ultra-wideband (UWB) indoor positioning in non-line-of-sight environments. The improved CKF is based on the squared range difference (SRD) model of the time difference of arrival (TDOA) algorithm. The inaccurate impact of model estimation under non-Gaussian noise is reduced by updating the measurement noise matrix in real time. The covariance matrix is estimated using singular value decomposition (SVD) to solve the problem of degraded state estimation performance. The filtering effect of the improved CKF algorithm is evaluated by referring to the checkpoints in the dynamic trajectory. The experimental results show that the proposed algorithm effectively mitigates the impact of UWB ranging outliers in the occluded experimental environment, which makes the dynamic positioning trajectory smoother, better fitted, and more stable. The algorithm improves the positioning accuracy by up to 39.29% compared with the SRD model used alone.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call