Abstract

An ultra-small (54 × 58 × 8.5 mm) and large aperture (1 × 7 mm) nine-color spectrometer—using an array of ten dichroic mirrors “biparted” as two layers—was developed and used for snapshot spectral imaging. Incident-light flux with a cross section smaller than the aperture size is split into nine color fluxes with 20-nm-width contiguous wavelength bands and central wavelengths of 530, 550, 570, 590, 610, 630, 650, 670, and 690 nm. Images of the nine color fluxes are simultaneously and efficiently measured by an image sensor. Unlike a conventional dichroic-mirror array, the developed dichroic-mirror array has a unique biparted configuration that not only increases the number of colors that can be measured simultaneously but also improves the image resolution of each color flux. The developed nine-color spectrometer was used for four-capillary-array electrophoresis. Eight dyes concurrently migrating in each capillary were simultaneously quantified by nine-color laser-induced fluorescence detection. Since the nine-color spectrometer is not only ultra-small and inexpensive but also has high light throughput and sufficient spectral resolution for most spectral-imaging applications, it has the potential to be widely used in various fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call