Abstract

In the present study, we designed an ultrasensitive sensing platform for the evaluation of the physiologically relevant values of basal dopamine (DA) in a culture medium as a complex biological environment. The proposed sensing platform was fabricated via the integration of molecular imprinting technology with carbon hybrid nanomaterials. Carbon nanofibers (CNFs) were grown by using plasma-enhanced chemical vapor deposition (PECVD) on tetrahedral amorphous carbon (ta-C) thin films on silicon wafers. The prepared ta-C/CNFs sensing platforms were electrochemically coated with DA-imprinted polypyrrole as the molecularly imprinted polymer (MIP) or "artificial receptors". The three-dimensional MIP receptors were able to determine trace values of DA in phosphate-buffered saline solution (PBS) pH 7.4 (LOD = 5.43 nM) as well as in the absolute culture media such as DMEM/F-12 medium (LOD = 39 nM), DMEM/F-12 medium supplemented with 15% horse serum and 2.5% fetal bovine serum (LOD = 53.26 nM), and F-12 K cell culture medium (LOD = 62.57 nM), with highly physiologically relevant sensitivity and free of interference by other coexisting biomolecules and biological compounds. As all the fabrication steps of the composite electrode are compatible with common microsystem technology processes, the present results pave the way for integrating these ultra-sensitive electrodes to microelectrode arrays (MEA) platforms used for human dopaminergic neurons studies in vitro and enable continuous measurement of the basal DA concentration in real-time for instance in organoid studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.