Abstract

The joint transmission scheme of polar codes and sparse code multiple access (SCMA) has been regarded as a promising technology for future wireless communication systems. However, most of the existing polar-coded SCMA (PC-SCMA) systems suffer from high latency caused by the feedback iteration and list decoding. In addition, the error performance of PC-SCMA systems is unsatisfactory for ultra-reliable transmission. Inspired by the compelling benefits of non-binary polar codes, in this paper, we design a non-binary polar-coded SCMA (NB-PC-SCMA) system with a free order matching strategy to address the issues of delay and reliability. Specifically, we first formulate a joint factor graph for NB-PC-SCMA and propose a non-binary successive cancellation list (NB-SCL) and damping based joint iterative detection and decoding (NSD-JIDD) multiuser receiver to improve the BER and latency performance. Then, a lazy-search based NB-SCL (L-NB-SCL) decoding is proposed to reduce the computational complexity by simplifying the path search pattern of the list decoder. After that, we modify the update of user nodes for SCMA detection to improve the convergence error and finally propose the improved NSD-JIDD (ISD-JIDD) algorithm, which can avoid redundant operations by exploiting L-NB-SCL decoding. Simulation results show that the proposed NB-PC-SCMA system achieves better bit error rate (BER) performance and considerable latency gain when compared to its counterparts. In particular, the proposed ISD-JIDD can achieve similar BER performance of NSD-JIDD with less complexity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.