Abstract

This paper presents an ultra-low-power boost converter for self-powered IoT applications to self-start and power-up IoT devices from scratch without any requirement of an external start-up. The proposed converter and its clock generator operate in sub-threshold utilizing bulk-driven technique for low-power operation. The bulk-driven technique improves charge transfer switches for effective switching using auxiliary transistors. This approach enables a MOSFET to operate on supplies lower than its threshold voltage with a significant reduction in the reverse charge transfer and switching loss while increasing the voltage conversion efficiency and output voltage. To validate the performance of the proposed architecture, the post-layout simulation is carried out in standard CMOS 0.18[Formula: see text][Formula: see text]m technology. Under low-voltage supply of 0.4[Formula: see text]V, the simulated transient output voltage takes 110[Formula: see text][Formula: see text]s to reach 1.92[Formula: see text]V with 0.15[Formula: see text] output voltage ripple, while consuming the power of 772[Formula: see text]nW.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call