Abstract

Soft robots have the potential to fundamentally change interactions between robots and the surrounding environment, and between robots and animals, and robots and humans in ways that today's hard robots are incapable of doing. However, to realize this potential, soft robot actuators require extremely high voltage supplies of more than 4 kV. The electronics that can satisfy this need currently are either too large and bulky or unable to achieve the high power efficiency required for mobile systems. To meet this challenge, this paper conceptualizes, analyzes, designs, and validates a hardware prototype of an ultra-high gain (UHG) converter that can support extremely large conversion ratios up to ∼1000× to provide up to 5 kV output voltage from an input voltage of ∼5-10 V. This converter is demonstrated to be able to drive HASEL (Hydraulically Amplified Self-Healing Electrostatic) actuators, a promising candidate to realize future soft mobile robotic fishes, from an input voltage range of a 1-cell battery pack. The circuit topology employs a unique hybrid combination of a high-gain switched magnetic element (HGSME) and a diode and capacitor-based voltage multiplier rectifier (DCVMR) to enable compact magnetic elements, efficient soft-charging in all flying capacitors, and adjustable output voltage capability with simple duty-cycle modulation. Achieving an efficiency of 78.2% at 15 W output power, while providing 3.85 kV output from 8.5 V input, the proposed UGH converter proves to be a promising candidate for future untethered soft robots.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.