Abstract

The 2 μm waveband is considered to have great potential in optical communications. Driven by the demands on high-performance functional devices in this spectral band, various integrated photonic components have been demonstrated. In this work, an analog and digital topology optimization method is proposed to design an ultra-broadband polarization beam splitter at the 2 μm waveband. Within an optical bandwidth of 213 nm, the excess losses of TE and TM modes are <0.53 dB and 0.3 dB, respectively. The corresponding polarization extinction ratios are >16.5 dB and 18.1 dB. The device has a very compact footprint of only 2.52 µm × 5.4 µm. According to our best knowledge, this is a benchmark demonstration of an ultra-broadband and ultra-compact polarization beam splitter enabled by the proposed optimization method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call