Abstract
Metamaterial absorbers possess potential applications in a large number of fields, including solar energy harvesting, photovoltaics, stealth technology and sensors, owing to their capability to achieve perfect absorption of electromagnetic waves. In this study, a solar metamaterial absorber comprising a TiN substrate, a SiO2 spacer layer and an array of patterned-layer TiN-SiO2 double circular employing the finite-difference time-domain (FDTD) method is proposed to achieve perfect absorption in ultra-broadband. Optimization results indicate that the broadband absorption spectrum of the absorber extends from deep ultraviolet to mid-infrared wavelengths with an average absorption of 98.1%. The distribution of electric and magnetic fields suggests that the absorber achieves high absorption due to the interaction between surface plasmon resonance (SPR), cavity resonance (CR) and magnetic resonance (MR). Furthermore, the proposed absorber is insensitive to large-angle incidence and polarization-independent. Moreover, the absorber can be produced at a low cost due to its tolerance of the geometrical errors. The newly proposed metamaterial absorber is expected to be applied in solar energy related fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.