Abstract

An ultra-accurate hybrid smoothed finite element method (HS-FEM) is presented for the analysis of piezoelectric structures, in which the electrostatic equations governing piezoelectric problem are solved numerically with simplest triangular elements in 2D and tetrahedral elements in 3D. In the present method, the strain field is assumed to be the weighted average between compatible strains from finite element method (FEM) and smoothed strains from node-based smoothed finite element method (NS-FEM). Numerical results demonstrate that the proposed method possesses a novel bound solution in terms of strain energy and eigenfrequencies, which is very important for safety and reliability assessments of piezoelectric structural properties. In addition, the numerical results obtained from HS-FEM are much more accurate than the standard finite element method using the same of nodes. Furthermore, the computational efficiency of HS-FEM is much better than the FEM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call