Abstract

Today, the Internet of things (IoT) is widely used in various fields, including health control, smart cities, intelligent buildings, and so on. One of the severe concerns in IoT systems is the issue of energy consumption and its management. IoT systems have limited energy resources, and in this regard, these limited resources must be managed appropriately. To design and build IoT systems, various aspects such as usable chips, types of communication protocols, timing of sending and receiving data, and so on, directly affect the system's energy consumption. Therefore, it is necessary to model and evaluate the energy consumption of IoT systems before building and implementing the system. Using an appropriate model makes it possible to investigate and understand how much the system consumes energy and how it is in conformity with the system's demands. This paper presents a stochastic reward net (SRN)-based model for modeling and quantitative evaluation of system energy consumption. To solve and evaluate the model, the proposed model is converted into an SRN model based on a series of automatic transformations. The proposed model is used in a case study to show how the model works and the results are given in the paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.