Abstract

SummaryIn this paper, we propose an interfacial pressure correction algorithm for smoothed particle hydrodynamics (SPH) simulation of multiphase flows with large density ratios. This correction term is based on the assumption of small deformation of the interface, and derived from perturbation expansion analysis. It is also proven to be applicable in cases with complex interfaces. This correction algorithm helps to overcome the discontinuities of the pressure gradient over the interfaces, which may cause unphysical gap between different phases. This proposed correction algorithm is implemented on a recent multiphase SPH model, which is based on the assumption of pressure continuity over the interfaces. The coupled dynamic solid boundary treatment is used to simulate solid walls; and a cut‐off pressure is applied to avoid negative particle pressure, which may cause computational instabilities in SPH. Three numerical examples of air–water flows, including sloshing, dam breaking, and water entry, are presented and compared with experimental data, indicating the robustness of our pressure correction algorithm in multiphase simulations with large density ratios. Copyright © 2015 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call