Abstract

For the first time, a model of the daytime disturbed D-region is presented which is consistent with experimental solar proton event (SPE) data, that of the 2–5 November, 1969 event in particular. Sunset electron concentration profiles also are shown to be quite compatible with the experimental results, but computed sunrise electron concentrations are found to rise faster with solar elevation than do the measurements. In the daytime, O 2 −, O −, CO 4 − and CO 3 − ions apparently do not retain electrons in contrast to NO 2 − and NO 3 − ions. Hydration of the latter two species is probably unimportant since photodetachment and/or photodissociation of these ions are insignificant processes even when they are unattached to water molecules. Difficulties at sunrise are thought to arise most likely from our omission of hydration processes for negative ions, the pre-sunrise negative ion populations undoubtedly having the highest diurnal hydration level. Sunset ozone computations using the latest chemistry are shown to match the data except for some problem at the highest altitude, near 70 km, for the earlier, more disturbed, of the two experimental profiles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call