Abstract

BackgroundCucurbita pepo is a cucurbit with growing economic importance worldwide. Zucchini morphotype is the most important within this highly variable species. Recently, transcriptome and Simple Sequence Repeat (SSR)- and Single Nucleotide Polymorphism (SNP)-based medium density maps have been reported, however further genomic tools are needed for efficient molecular breeding in the species. Our objective is to combine currently available complete transcriptomes and the Zucchini genome sequence with high throughput genotyping methods, mapping population development and extensive phenotyping to facilitate the advance of genomic research in this species.ResultsWe report the Genotyping-by-sequencing analysis of a RIL population developed from the inter subspecific cross Zucchini x Scallop (ssp. pepo x ssp. ovifera). Several thousands of SNP markers were identified and genotyped, followed by the construction of a high-density linkage map based on 7,718 SNPs (average of 386 markers/linkage group) covering 2,817.6 cM of the whole genome, which is a great improvement with respect to previous maps. A QTL analysis was performed using phenotypic data obtained from the RIL population from three environments. In total, 48 consistent QTLs for vine, flowering and fruit quality traits were detected on the basis of a multiple-environment analysis, distributed in 33 independent positions in 15 LGs, and each QTL explained 1.5–62.9% of the phenotypic variance. Eight major QTLs, which could explain greater than 20% of the phenotypic variation were detected and the underlying candidate genes identified.ConclusionsHere we report the first SNP saturated map in the species, anchored to the physical map. Additionally, several consistent QTLs related to early flowering, fruit shape and length, and rind and flesh color are reported as well as candidate genes for them. This information will enhance molecular breeding in C. pepo and will assist the gene cloning underlying the studied QTLs, helping to reveal the genetic basis of the studied processes in squash.

Highlights

  • Cucurbita pepo is a cucurbit with growing economic importance worldwide

  • Sequence data and Single Nucleotide Polymorphism (SNP) discovery A total of 242.4 million cleaned reads with a total of 21.7 Gb were generated for the parents, F1 and the 122 Recombinant Inbred Line population (RIL) samples

  • A 93.9% of the cleaned reads were mapped to the C. pepo genome and 62,617 SNPs were identified after the SNP calling with Freebayes

Read more

Summary

Introduction

Cucurbita pepo is a cucurbit with growing economic importance worldwide. Our objective is to combine currently available complete transcriptomes and the Zucchini genome sequence with high throughput genotyping methods, mapping population development and extensive phenotyping to facilitate the advance of genomic research in this species. Cucurbita pepo L. is an economically important species of the Cucurbitaceae family cultivated worldwide, with more than 24 million tons produced in 2013 and nearly 1.8 million ha cultivated [1]. It is important in Asian, American and Mediterranean countries, being Mexico and Spain the main worldwide exporters. The species is divided into three subspecies, C. pepo ssp. The domestication occurred at least twice in Southern USA and Northern Mexico, where the cultivar diversification was initiated.

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call