Abstract

Cellular morphology, contact, and arrangement in the late blastula and in various stages of gastrulation ofXenopus were examined by SEM of specimens dissected after fixation or fractured in amyl acetate. The prospective ectoderm of the blastocoel roof consists of several layers of interdigitating cells connected by numerous small protrusions which may function in the decrease in number of cell layers observed during ectodermal epiboly. During gastrulation, prospective mesoderm is regionally differentiated by cellular morphology and arrangement into preinvolution mesoderm, the mesodermal involution zone, and involuted mesoderm. The involuted anterodorsal (head), lateral, and ventral mesoderm consists of a stream of loosely-packed, irregularly shaped cells having large extensions of the cell body attached locally to other cells by small protrusions. Involuted posterodorsal mesoderm (chordamesoderm) consists of elongated cells arranged in palisade fashion and connected by similar protrusions. Involuted mesodermal cells in all regions are attached to the overlying prospective ectodermal cells by numerous small protrusions along the entire interface between the two cell layers. Suprablastoporal endodermal cells involute as an epithelial sheet, changing in shape in the process, to form the roof of the archenteron. Bottle cell morphology, arrangement, and position with respect to the mesodermal cell stream is described. Evidence presented here and elsewhere suggests that involution of mesoderm and of the archenteron roof inXenopus is dependent primarily upon the relative movement of the mesodermal cell stream and of the overlying ectoderm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.