Abstract

In this paper, we study a class of fractional semi-infinite polynomial programming problems involving sos-convex polynomial functions. For such a problem, by a conic reformulation proposed in our previous work and the quadratic modules associated with the index set, a hierarchy of semidefinite programming (SDP) relaxations can be constructed and convergent upper bounds of the optimum can be obtained. In this paper, by introducing Lasserre’s measure-based representation of nonnegative polynomials on the index set to the conic reformulation, we present a new SDP relaxation method for the considered problem. This method enables us to compute convergent lower bounds of the optimum and extract approximate minimizers. Moreover, for a set defined by infinitely many sos-convex polynomial inequalities, we obtain a procedure to construct a convergent sequence of outer approximations which have semidefinite representations (SDr). The convergence rate of the lower bounds and outer SDr approximations are also discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call