Abstract

SCF-MS- Xα calculations of the electronic structure of diatomic halogens and interhalogens XY (X = I, Br, Cl; Y = I, Br, Cl, F) have been used to investigate the bonding and nuclear quadrupole coupling in these molecules. Calculations have been carried out for the ground X 1 Σ electronic state, and for the excited B 3 Π 0 state in the case of I 2, Br 2, ICl and IBr. Good agreement (to within 10% in most cases) is obtained between the calculated and observed nuclear quadrupole coupling constants for the molecules in the ground state. For the excited state the agreement is not as good, but the calculation does reproduce the observed decrease in the coupling constants to less than one quarter of their ground state values, and analysis of the contributions to the field gradients clearly shows the reasons for this. The electric dipole moments and electric quadrupole moments of the molecules have also been calculated. However, these prove to be much more strongly dependent on the variables used in the calculation (atomic sphere radii, inclusion of d orbitals). The results of the calculations have also been used to test some of the assumptions made in the Townes and Dailey method of analysis of nuclear quadrupole coupling data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call