Abstract

Effective and durable photocatalysts are essential for the decomposition of persistent contaminants and the generation of hydrogen peroxide. In this study, we successfully constructed an S-type heterojunction by in situ growing Bi2O3 nanocrystals and NH2-MIL-101(Fe) onto surface-modified g-C3N4. The process of charge transfer in the S-type heterojunction was confirmed using ISI-XPS, DFT calculations, capture experiments, and EPR signals. The combined influence of the heterojunction and MOF demonstrated remarkable photocatalytic performance in the breakdown of tetracycline (TC) and the generation of hydrogen peroxide (H2O2). In the enhanced setup (10%–NH2–MIL-101(Fe)@MCN/Bi2O3), full degradation of TC was accomplished within 50 min under visible light exposure. Additionally, a notable H2O2 yield of 655.63 μmol/g was attained, all achieved without the necessity of sacrificial agents or supplementary oxygen. Based on the outcomes of the dual functionality, the exceptional performance of the ternary composite material can be ascribed to the collaborative influence of the heterojunction and MOF. This collaborative effect expands the light absorption range in the visible region, suppresses the recombination of electron-hole pairs, and enhances the photocatalytic redox ability. The system demonstrates significant potential in the efficient in situ production of H2O2 and removal of recalcitrant organic pollutants in pure water.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call