Abstract

Candidate clones which conferred Al tolerance to yeast transformants (TFs) were obtained from a cDNA library derived from a highly Al-tolerant poaceae, Andropogon virginicus L. One such clone, AL3A-4, encoded an S-adenosyl methionine synthetase (SAMS) gene. A full-length cDNA was obtained by 5′-RACE, designated AvSAMS1, and introduced into Arabidopsis thaliana to investigate its biological functions under Al stress. Two TF plant lines both showed higher tolerance than the Col-0 ecotype (non-TF) not only for Al stress, but also for Cu, Pb, Zn and diamide stresses, suggesting the AvSAMS1 was a multiple tolerance gene. More than 40 of A. thaliana Al response-genes (Al induced genes and Al repressed genes) were selected from microarray results and then used for investigations of DNA or histone methylation status under Al stress in Col-0 and the AvSAMS1 TF line. The results indicated that Al stress caused alterations of methylation status in both DNA and histone H3 (H3K4me3 and H3K9me3) and that these alterations were different between the AvSAMS1 TF and Col-0, suggesting the differences were AvSAMS1-gene dependent. These results suggested the existence of AvSAMS1-related epigenetic gene-regulation under Al stress.

Highlights

  • Aluminum (Al) in acid soil areas is solubilized into soil solution below pH 5.0 as a toxic form, Al3+, and its toxicity results in a loss of crop yields as a limiting factor of plant growth in agriculture

  • Pool of cDNA clones carrying the A. virginicus L. cDNA were introduced into INVSc1 and the ura+ and Al tolerant TFs were directly screened on the low phosphate and magnesium (LPM) agar plates including 300 μM Al

  • To understand the high Al tolerance phenotype of A. virginicus L., a direct screening of Al tolerant genes was performed in this study

Read more

Summary

Introduction

Aluminum (Al) in acid soil areas is solubilized into soil solution below pH 5.0 as a toxic form, Al3+, and its toxicity results in a loss of crop yields as a limiting factor of plant growth in agriculture. Ezaki et al (2015) reported an Al stress induced half type ABCG transporter protein derived from a poaceae wild plant, Andropogon virginicus L. It has been demonstrated that induction of antiperoxidation enzymes can ameliorate the oxidative damage caused by Al stress and lead to Al tolerance phenotypes in various plants (Richards et al, 1998; Ezaki et al, 2001; Milla et al, 2002; Boscolo et al, 2003; Watt, 2003) Phenolic compounds, such as flavonoids, alkaloids, terpenoids and glycosides, form strong complexes with toxic Al ions and are implicated in internal Al detoxification especially in Al-accumulating species (Kidd et al, 2001; Ofei-Manu et al, 2001; Ito et al, 2009)

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.