Abstract

The circadian clock of the cyanobacterium Synechococcus elongatus PCC 7942 drives oscillations in global mRNA abundances with 24-hr periodicity under constant light conditions. The circadian clock-regulated transcription factor RpaA controls the timing of circadian gene expression, but the mechanisms underlying this control are not well understood. Here, we show that four RpaA-dependent sigma factors-RpoD2, RpoD6, RpoD5, and SigF2-are sequentially activated downstream of active RpaA and are required for proper expression of circadian mRNAs. By measuring global gene expression in strains modified to individually lack rpoD2, rpoD6, rpoD5, and sigF2, we identify how expression of circadian mRNAs, including sigma factor mRNAs, is altered in the absence of each sigma factor. Broadly, our findings suggest that a single transcription factor, RpaA, is sufficient to generate complex circadian expression patterns in part by regulating an interdependent sigma factor cascade.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.