Abstract

The tea plant ( Camellia sinensis L. O. Kuntze) is a high aluminum (Al) tolerant and accumulator species. Candidate genes related to Al tolerance in tea plants were assembled based on de novo transcriptome analysis. The homologs implied some common and distinct Al-tolerant mechanism between tea plants and rice, Arabidopsis and buckwheat. In addition to high Al tolerance, the tea plant exhibits good performance exposure to a proper Al level, and accumulates high Al in the leaves without any toxicity symptom. Therefore, Al was considered as a hyperaccumulator and beneficial element for tea plants. However, the whole-genome molecular mechanisms accounting for Al-tolerance and accumulation remain unknown in tea plants. In this study, transcriptome analysis by RNA-Seq following a gradient Al-level exposure was assessed to further reveal candidate genes involved. Totally more than 468 million high-quality reads were generated and 213,699 unigenes were de novo assembled, among which 8922 unigenes were all annotated in the seven databases used. A large number of transporters, transcription factors, cytochrome P450, ubiquitin ligase, organic acid biosynthesis, heat shock proteins differentially expressed in response to high Al (P≤0.05) were identified, which were most likely ideal candidates involved in the Al tolerance or accumulation. Furthermore, a few of the candidate Al-responsive genes related to Al sequestration, cell wall modification and organic acid excretion have been well elucidated as was already found in Arabidopsis, rice, and buckwheat. Thus, some consistent Al-tolerance mechanisms across the species are indicated. In conclusion, the transcriptome data provided useful insights of promising candidates for further characterizing the functions of genes involved in Al tolerance and accumulation in tea plants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.