Abstract

Localization of specific mRNAs is an important mechanism through which cells achieve polarity and direct asymmetric growth. Based on a framework established in Saccharomyces cerevisiae, we describe a She3-dependent RNA transport system in Candida albicans, a fungal pathogen of humans that grows as both budding (yeast) and filamentous (hyphal and pseudohyphal) forms. We identify a set of 40 mRNAs that are selectively transported to the buds of yeast-form cells and to the tips of hyphae, and we show that many of the genes encoded by these mRNAs contribute to hyphal development, as does the transport system itself. Although the basic system of mRNA transport is conserved between S. cerevisiae and C. albicans, we find that the cargo mRNAs have diverged considerably, implying that specific mRNAs can easily move in and out of transport control over evolutionary timescales. The differences in mRNA cargos likely reflect the distinct selective pressures acting on the two species.

Highlights

  • Cell polarity – asymmetry in shape, protein distribution, and/or sub-cellular function – is an essential feature of most eukaryotic cells and underlies such fundamental processes as cell division, cell differentiation, and cell-cell communication

  • We describe an RNA transport system in Candida albicans, a fungal pathogen of humans, that grows in both single cell and filamentous forms

  • We show that the C. albicans She3-dependent RNA transport system binds to 40 mRNAs and transports these mRNAs to yeast buds and to the tips of hyphae

Read more

Summary

Introduction

Cell polarity – asymmetry in shape, protein distribution, and/or sub-cellular function – is an essential feature of most eukaryotic cells and underlies such fundamental processes as cell division, cell differentiation, and cell-cell communication. One of the best understood RNA localization mechanisms is the Saccharomyces cerevisiae She system, a riboprotein complex that uses actomyosin transport to move a set of mRNAs from the mother cell to the bud during mitosis [15,16,17,18,19]. Within the She complex, She is thought to be the primary RNA binding protein that links specific mRNAs to

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.