Abstract
Frequent transitions of bacterial pathogens between their warm-blooded host and external reservoirs are accompanied by abrupt temperature shifts. A temperature of 37°C serves as reliable signal for ingestion by a mammalian host, which induces a major reprogramming of bacterial gene expression and metabolism. Enteric Yersiniae are Gram-negative pathogens accountable for self-limiting gastrointestinal infections. Among the temperature-regulated virulence genes of Yersinia pseudotuberculosis is cnfY coding for the cytotoxic necrotizing factor (CNFY), a multifunctional secreted toxin that modulates the host’s innate immune system and contributes to the decision between acute infection and persistence. We report that the major determinant of temperature-regulated cnfY expression is a thermo-labile RNA structure in the 5’-untranslated region (5’-UTR). Various translational gene fusions demonstrated that this region faithfully regulates translation initiation regardless of the transcription start site, promoter or reporter strain. RNA structure probing revealed a labile stem-loop structure, in which the ribosome binding site is partially occluded at 25°C but liberated at 37°C. Consistent with translational control in bacteria, toeprinting (primer extension inhibition) experiments in vitro showed increased ribosome binding at elevated temperature. Point mutations locking the 5’-UTR in its 25°C structure impaired opening of the stem loop, ribosome access and translation initiation at 37°C. To assess the in vivo relevance of temperature control, we used a mouse infection model. Y. pseudotuberculosis strains carrying stabilized RNA thermometer variants upstream of cnfY were avirulent and attenuated in their ability to disseminate into mesenteric lymph nodes and spleen. We conclude with a model, in which the RNA thermometer acts as translational roadblock in a two-layered regulatory cascade that tightly controls provision of the CNFY toxin during acute infection. Similar RNA structures upstream of various cnfY homologs suggest that RNA thermosensors dictate the production of secreted toxins in a wide range of pathogens.
Highlights
Throughout their infection cycle, bacterial pathogens encounter changing nutritional and physical conditions
Many pathogens secrete toxins in order to subvert host defense systems. We find that such a secreted toxin in enteropathogenic Yersinia pseudotuberculosis is produced only at host body temperature. This regulation depends on a temperature-responsive RNA structure, an RNA thermometer, in the 5’-untranslated region of the toxin mRNA, which prevents translation at low temperatures when the bacterium is outside the host
Given that similar RNA thermometer-like structures exist upstream of related toxin genes in various bacterial pathogens, we propose that RNA thermometermediated toxin production is an evolutionary conserved mechanism
Summary
Throughout their infection cycle, bacterial pathogens encounter changing nutritional and physical conditions. Bacterial pathogens have evolved diverse signal transduction cascades that adjust gene expression as soon as they are confronted with elevated temperatures (37 ̊C) in the warm-blooded host. Such a shift in temperature has an impact on almost any biomolecule. An increase in ambient temperature provokes a gradual melting of the secondary structure, which liberates the ribosome-binding site (RBS) enabling translation initiation. Because of their instantaneous and reversible zipper-like control mechanism, RNATs are well-suited to adjust expression of virulence genes in bacterial pathogens during their infection cycle [7,8]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.