Abstract

Meiotic silencing by unpaired DNA (MSUD) is a biological process that searches pairs of homologous chromosomes (homologs) for segments of DNA that are unpaired. Genes found within unpaired segments are silenced for the duration of meiosis. In this report, we describe the identification and characterization of Neurospora crassa sad-7, a gene that encodes a protein with an RNA recognition motif (RRM). Orthologs of sad-7 are found in a wide range of ascomycete fungi. In N. crassa, sad-7 is required for a fully efficient MSUD response to unpaired genes. Additionally, at least one parent must have a functional sad-7 allele for a cross to produce ascospores. Although sad-7-null crosses are barren, sad-7Δ strains grow at a wild-type (wt) rate and appear normal under vegetative growth conditions. With respect to expression, sad-7 is transcribed at baseline levels in early vegetative cultures, at slightly higher levels in mating-competent cultures, and is at its highest level during mating. These findings suggest that SAD-7 is specific to mating-competent and sexual cultures. Although the role of SAD-7 in MSUD remains elusive, green fluorescent protein (GFP)-based tagging studies place SAD-7 within nuclei, perinuclear regions, and cytoplasmic foci of meiotic cells. This localization pattern is unique among known MSUD proteins and raises the possibility that SAD-7 coordinates nuclear, perinuclear, and cytoplasmic aspects of MSUD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.