Abstract
Cardiovascular disease is one of the deadliest diseases in the world. Accurate analysis and prediction for real-time heart disease are highly significant. To address this challenge, a novel IoT-based automated function monitoring system to promote the e-healthcare system is proposed. The proposed remote healthcare monitoring system uses an IoT framework (RHMIoT) using deep learning and auto encoder-based machine learning algorithms to accurately predict the presence of heart disease. The RHMIoT framework contains two phases: the first phase is to monitor the severity level of the heart disease patient in real-time, and the second phase is used in the medical decision support system to predict the accuracy level of heart disease. To train and test the open-access Framingham dataset, various deep learning and auto encoder-based machine learning techniques are used. The proposed system obtains an accuracy of 0.8714% using the auto encoder-based kernel SVM algorithm compared to other approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Ambient Computing and Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.